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SUMMARY 
A novel formulation of the method of fundamental solutions for the numerical solution of plane biharmonic 
problems, based on the simple layer potential representation of Fichera, is presented. The applicability and 
accuracy of the method are demonstrated by examining its performance on a set of practical problems arising 
in Stokes fluid flow. 
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1. INTRODUCTION 

In recent studies by Karageorghis and Fairweather,'** two formulations of the method of 
fundamental solutions have been used successfully for the numerical solution of a variety of 
biharmonic problems. Each of these formulations was proposed by Fairweather and J ~ h n s t o n . ~  
In this paper we examine a third approach suggested by these authors, which is based on a simple 
layer potential representation of a biharmonic function given by Fichera.4 

The biharmonic problem considered in this paper is 

(2) 
a@ B,$(P)=B(p)+-(p)=O, P e a 0 9  
ayP 

where R is a bounded domain in the plane with boundary aR, V2 denotes the Laplacian, a&, and 
i?/8yp denote the partial derivatives with respect to x, and y ,  respectively, and o! and /? are 
prescribed functions of position. Problems of this type arise, for example, in fluid flow problems, 
where $ denotes the stream function, and do not have unique solutions--clearly i+b + c is a solution 
of (I), (2), where c is an arbitrary constant. The quantities of interest in such problems are usually 
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derivatives of the solution, in which case this non-uniqueness is inconsequential. 
Fichera’s simple layer potential representation of a solution t,b of (l), (2) takes the form 

where CT and p are density functions defined on aR and are determined so that t,b satisfies the 
prescribed boundary conditions on dR. The function G(p, q) is a fundamental solution of the 
biharmonic equation, namely 

G(P,  4 )  = - br2(p, 4) 1ogr2(p, 4, 
where r ( p ,  4)  is the distance between the points p = ( x p ,  y,) and q = ( x q ,  yq). Since 

equation (3) becomes 

where 
K(P,  4 ) = b  r2 (p9  4)+ 1, 

a fundamental solution of Laplace’s equation. Based on (4), boundary integral formulations of 
biharmonic problems of the form (l), (2) have been examined by Black et al.,5 Hsiao and 
MacCamy6 and Richter.’ 

In the present formulation of the method of fundamental solutions, we define an approximation 
$N to II/ by 

N 

$N(c, d, t, Pi)= C C ~ j ( ~ p ~ - ~ r j ) + d j ( ~ p , - ~ r j ) I  K b i ,  t j ) ,  ( 5 )  
j =  1 

where 

C = [ C , , C , , .  . .  ,CN], d=Cdl ,d2 , .  * . Y ~ N ] ,  t=[Xr,,Ytl,Xr2,Yr2’Xft’Yrj(...,XrN,YrN1 , 

(x,,, y p , )  are the co-ordinates of the point p i ,  with ~ ~ € 0 ,  and (xr,, y r j )  are the co-ordinates of the 
singularity t j ,  a point outside a. This representation of a biharmonic function is motivated by 
considering Fichera’s representation (4) with respect to an ‘auxiliary boundary’ aR,; enclosing the 
region R, and replacing the integral by some quadrature formula with nodes t j , j =  1, . . . , N ;  c.f. 
Oliveira.’ The goal is to determine the locations of these points (and in essence the auxiliary 
boundary an,) and the values of the coefficients cj and d j  so that the function $N satisfies the 
boundary conditions (2) in some sense. As in previous formulations of the method of fundamental 
solutions,” this is done by a least squares fit of $N to the boundary data; that is, by choosing 
points pi, i =  1, . . . , M ,  on dR and minimizing the functional 

M 

i =  1 
F(c,d,t)= {IB,t,b,(c,d,t,pi)I2+IB2t,bN(c,d,t,pi)I2}, (6) 

which is linear in the coefficients cjr d ,  j =  1,. . . , N ,  but non-linear in the t i s .  The minimization is 
performed using a non-linear least squares algorithm, with the number of boundary points taken 
to be approximately three times the number of unknowns, i.e. M = 12N, as recommended by 
Ho-Tai et d9 



SIMPLE LAYER POTENTIAL MFS 1223 

2. SOLUTION OF THE MINIMIZATION PROBLEM 

The non-linear least squares problem is solved via the routine LMDIF (from MINPACK), which 
is based on a modified version of the Levenberg-Marquardt algorithm. The subroutine LMDIF 
minimizes 

2M 
F =  c IA2, 

i =  1 

where 

and 

i = M + l , .  . . , 2 M .  

The routine LMDIF requires the user to provide starting values for all the variables. In general 
the boundary points are placed uniformly around the boundary and initially the singularities are 
placed uniformly outside the region at a fixed distance from the boundary points, as described by 
Karageorghis and Fairweather.' Initially all of the coefficients cj and d j  are set equal to unity. The 
computational effort involved in the use of LMDIF is measured in terms of the number of function 
evaluations, FEV; that is, the number of times the vector f =  [fi,f2, . . . ,hM] is evaluated. The 
minimization process terminates when either convergence to a user-specified tolerance is achieved 
or the user-specified limit on the number of function evaluations is reached. 

In implementing the present MFS, advantage may be taken of certain symmetries the boundary 
value problem in question may possess, for example, symmetry about one co-ordinate axis. 
Expressions for (7) and (8) in this case are given in the Appendix. 

The implementation also includes a technique introduced by MacDonell," which has been 
used effectively in previous MFS formulations to improve the convergence rate of the 
minimization process. The idea is to begin the process with N1 singularities and M1 boundary 
points and to perform FEV1, say, function evaluations. The number of singularities is then 
increased to N2 and the number of boundary points to M2, where M2=M1+12(N2-N1) .  
A number, FEV2, of function evaluations is then performed, after which the number of 
singularities can be increased to N3 with a corresponding increase in the number of boundary 
points to M3,  with M 3  = M 2  + 12(N3 - N2) .  In subsequent examples this technique is referred to 
as the improved version of the MFS. 

It should be noted that the subroutine LMDIF does not require the user to provide the 
Jacobian but calculates an approximation to it. The use of LMDER, also from MINPACK, might 
improve the efficiency of the minimization process but would increase significantly the complexity 
of the code since this routine requires the user to supply the exact Jacobian. In neither of these 
codes can one exploit the structure of the functional (6) in which the coefficients c j ,  d,,  
j =  1, . . . , N, are linear and only the co-ordinates of the singularities appear non-linearly. 

3. NUMERICAL EXAMPLES 

In this section the method is tested on three problems arising in Stokes fluid flow. All of the 
computations were performed in double precision on an IBM 3090/300E computer at the 
University of Kentucky. 



1224 A. KARAGEORGHIS AND G. FAIRWEATHER 

3.1. Example I-Fully developed Poiseuille flow 

In this simple example we examine fully developed Poiseuille flow in a unit square. This 
problem was solved by Black et aL5 using a boundary element method based on Fichera's simple 
layer potential representation (4). 

The streamfunction I) satisfies the biharmonic equation (1) subject to the boundary conditions 
shown in Figure 1. The solution of this problem is 

44% Y ) = 3 Y - 4 Y 3 ) .  
This problem possesses symmetry about the y-axis, which is exploited in the implementation of 
the MFS. Numerical experiments were carried out for various values of M, N and FEV. In 
Table I the magnitude of the error in the velocity at)/ay is presented on a 0.1 x 0.2 grid on the 
region [ -$,0] x [ -3, $1. (In the table the entries in each cell refer to the top left-hand grid 
point of the cell.) For each set of parameters it can be seen that the error is uniform throughout this 
region. Moreover, the efficiency of the improved version of the MFS can also be observed. With 
fewer degrees of freedom and function evaluations, this method produces more accurate 
approximations than the basic method. From results (d) and (e) it can be seen that, in this example, 
little is gained by increasing the number of boundary points. On the other hand, experiments show 
that an increase in the number of singularities degrades the rate of convergence. 

In Table I1 we tabulate the vorticity V2$ on the same grid. In this case there is an indication that 
the error achieves its maximum on the boundary and, in particular, at  the corners of the region. 

3.2. Example 2-The driven cavity problem 

The second example investigated in this study is the driven cavity problem, which describes 
steady viscous flow in a square cavity with a sliding wall. In recent years, boundary methods for 
the solution of this problem have been examined by Burgess and Mahajerin," Ingber and 

(-f  

* =o 
X 

3 
Y 2  

$ =-(1-4y2 

J, =$ =o ( t , - j )  
X Y  

( - f , - t )  

I 
Figure 1.  Fully developed Poiseuille flow 
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Table I. Error in a$/ay for Example 1 
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0.269 1 ( - 2) 
0.5949 (- 3) 
0.1484 (-4) 
0.5884 ( - 5) 
0.7246 (-4) 
0.3412 (-2) 
0.2093 ( - 3) 
0.358 1 (- 4) 
0.9358 (- 5) 
04412 (- 5) 

0'3762 (- 2) 
0.3731 (-5) 
0.241 3 ( - 4) 
0.4208 (- 5) 
0.6292 ( - 5) 
04210 (-2) 

0.1324 (-4) 
09405 ( - 5) 
01490(-4) 

0.2441 ( -  3) 

0,3187 (-2) 
0.2355 ( -  3) 
0.5930 (-4) 
0.1849 (-4) 
0.1377(-7) 

09340 (- 3) 
04419 (- 3) 
0.8249 (-4) 
0.4244 ( - 4) 
0.1230 ( -  5) 

0.7871 (- 3) 
0.3704 (- 3) 
0 1 158 ( - 3) 
0.1397 (-4) 
0.1567 (-4) 
0.3374 (-2) 
0.1 567 ( - 3) 
0.1967 (-4) 
0.1599(-5) 
0.7304 ( - 6) 

0.4089 ( - 2) 
01635 (-3) 
0.3556 (-4) 
0.2197 (-6) 
0243 1 ( - 5) 

0.4105 (-2) 
0.2715(-3) 
0.2479 (- 4) 
0.1 104 ( - 4) 
0.1476 ( - 4) 

0.2895 ( - 2) 
0.1163(-3) 
03518 (-4) 
0.8024 ( - 5 )  
0.1738 (- 5) 

0.6037 (-4) 
0.2802 (- 3) 
0.6249 ( - 4) 
0.1869 (-4) 
0.1834 (-4) 

0.2272 ( - 2) 
0.2989 (- 3) 
0.2828 (- 4) 
0.2891 (-4) 
0.4241 (- 5) 

03445 ( - 2) 
0.1994(-3) 
0.3735 (-4) 
0.1379 (-4) 
0.1032 ( -  5) 

0.4127 (-2) 
0'2084 ( - 3) 
03622 (-4) 
0.3428 (- 5) 
06579 ( - 6) 

0.4057 (- 2) 
0.2542 (- 3) 
03226 (-4) 
07703 (- 5) 
0.1 133 ( - 4) 

0.3070 (- 2) 
0.1879 (-3) 
0,4073 ( - 4) 
02174(-5) 
0.8014 (- 5) 

0.1 141 (-2) 
0.2686 (- 3) 
01587 (-4) 
04852 (- 5) 
01817 (-4) 

0.2203 ( - 2) 
0.1623 (-3) 
0.9001 (-4) 
0.2955 (-4) 
0.1033 (-4) 
03422 (- 2) 
0-1914(-3) 
02552 (-4) 
0.1097 (-4) 
0.1079 (- 8) 

0-4154(-2) 
02374 (- 3) 
0.3783 (-4) 
0.5059 (- 5) 
02732 (- 5) 

0.4084 (- 2) 
0.2561 (-3) 
03654 (-4) 
05201 (-5) 
08745 (- 5) 
0.3142 (-2) 
0.1958 (-3) 
0.2882 (-4) 
0.1917 (-6) 
0.7927 (- 5) 

01662 (- 2) 
02308 (- 3) 
0.9369 (-4) 
0.1370(-4) 
0.2052 (-4) 

0.1535(-2) 
0-1 147 ( -  3) 
0.5017 (-4) 
01618 (-4) 
0-1 807 ( - 5) 

0'3466 ( - 2) 
0.2164 (-3) 
03598 (-4) 
03849 (- 5) 
0.3016 (-5) 

0.4182 (-2) 
0-2579 ( - 3) 
0.4139 (-4) 
0.4355 (- 5) 
0.3957 (- 5) 
0.4127 (-2) 
0.2658 (- 3) 
0.4059 ( - 4) 
03606 (- 5) 
0.6700 ( - 5) 

0.3246 
0.2238 
0.371 1 
0.3564 
0.401 2 

0.1015 
0.4822 
0.2926 
0.5430 
0-1336 

0.2321 (- 2) 
0.2289 (- 3) 
02114 (-4) 
04403 ( - 4) 
0.1256 (-4) 

0.3519 (-2) 
02434 ( - 3) 
04962 ( - 4) 
0.7541 ( -  6) 
0.4696 ( - 5) 
0.4195 (-2) 
0.2661 ( - 3) 
0.4346 ( - 4) 
0-3690 (- 5) 
0,4382 ( -  5) 
0.4146 ( -  2) 
0.2712 (-3) 
0.4262 ( - 4) 
0.301 5 (- 5) 
0.5855 (- 5) 

0.33 14 ( - 2) 
0.2500 ( - 3) 
0.4855 (-4) 
0.6358 (-6) 
0.2157 (-5) 

0.1533 (-2) 
0.2458 ( - 3) 
02682 ( - 4) 
01860(-4) 
0.3393 (- 4) 

~ 

(a) M = 80, N = 8, FEV = 350. 
(b) M=80, N=8,  FEV=650. 
(c) M = 100, N = 10, FEV = 1OOO. 
(d) M1=44, N1=5, FEVl=200, M2=68, N2=7, FEV2=500. 
(e) M1=60, N1=5, FEV1=200, M2=84, N2=7, FEV2=500. 

Mitra," Karageorghis and Fairweather',' and Kelmanson." The flow region and boundary 
conditions for this problem are shown in Figure 2. 

The problem is symmetric about the y-axis and this is exploited in the present formulation of the 
MFS. Complicating this problem are the boundary singularities at the corners ( - 3 , t )  and (*,*). 
As in Karageorghis and Fairweather,',' in a neighbourhood of a corner singularity a denser grid 
is imposed by choosing boundary points at a distance 

dj=0.5 [ j / M , I p  

from the corner. The subscript j refers to thejth boundary point from the singularity, M ,  is the 
number of boundary points on the halves of the sides adjacent to the corner near the singularity, 
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Table 11. Error in Vz$ for Example 1 

0.4884 (- 1) 
0.3026 (- 1) 
04416(-2) 
0.2329 (- 2) 
02359 (- 2) 

01946 (- 1) 
0.1204 (- 1) 
0.1141 (-2) 
0.1713 (-2) 
0.8427 ( - 3) 
0.1454 
0.9193 
0.1612 
0.1048 
0.6597 
0.1375 
0.8375 
0.1063 
0.1888 
03917 
0.1533 ( -  1) 
0.9057 ( - 2) 
0.1315 (-2) 
0.1868 (-2) 
0'2668 (- 3) 

0.3232 (- 1) 
0.1945 ( -  1) 
0.8072 ( -  2) 
0.3319 (-2) 
0'1265(-2) 

0.2575 (- 1) 
0'1546 ( -  1) 
0.7088 (- 2) 
0.2962 (- 2) 
0.1596 ( -  3) 

0.3741 ( -  2) 
0.2878 (- 2) 
0.8046 ( - 4) 
0.4198 (- 3) 
0'2018 (- 3) 

0.3365 (- 2) 
0.2339 (- 2) 
0.2954 (- 3) 
0.3206 (- 3) 
0.1903 ( - 3) 

0.3568 (- 2) 
02089 (- 2) 
0.2424 (- 3) 
0-4305 (- 3) 
0.9020 ( - 4) 
0.4733 (- 2) 
0.2192 (-2) 
0.1629 (- 3) 
0.3874 (- 3) 
0.5879 (-4) 

0.2501 ( -  1) 
01524 (- 1) 
05136 (-2) 
0.2496 (- 2) 
06017 (- 3) 

0'1058 (- 2) 
0'5545 ( -  3) 
0.5314 ( -  3) 
0.3124(-2) 
0'1916 ( -  3) 

06579 ( -  3) 
03602 (- 3) 
04408 ( - 4) 
0.1976 (- 3) 
0'5795 ( - 4) 
0.8905 ( - 3) 
0.6316(-3) 
0.6507 ( - 4) 
01123(-3) 
0.5764 (- 4) 
0.8610 (- 3) 
05280 (- 3) 
0.5202 (- 4) 
0.1 102 (- 3) 
0.2202 ( - 4) 

0'3800 (- 3) 
0'2149 ( -  3) 
0.4905 ( - 4) 
0.1748 (-4) 
0,6345 ( - 4) 

0.1301 (-2) 
0.8655 ( -  3) 
0.6557 ( -  3) 
0.1658 (-2) 
0'8401 (- 3) 

0'5138 (-2) 
0.3150 (- 2) 
0.3123 (-2) 
0.1 109 (- 2) 
0.6574 ( - 4) 

0'1303 (-3) 
0.1299 (-3) 
0.6358 (- 4) 
0.2069 ( - 3) 
01300(-4) 
0.3308 (- 3) 
0'2620 ( - 3) 

0'6034 ( - 4) 
0.2235 (-4) 
0.3196 (- 3) 
0 1768 ( - 3) 
0.1024 (-4) 
0.2255 (-4) 
0.4851 (-5) 

0.1587(-3) 
0.8490 ( - 4) 
0.6197 (-4) 
0.8335 (-4) 
0.5123 (-4) 

0'5548 ( - 2) 
0.3483 ( -  2) 
0.2667 ( - 2) 
0.1699(-2) 
0.3163 (-3) 

0.1055 (-4) 

0.1562 (-2) 
01185 (-2) 
06360 (-4) 
0.8764 ( -  3) 
01042 (- 3) 

0.7693 (- 3) 
0.5275 (- 3) 
07378 (-4) 
01353 (-4) 
0.1689 (-4) 
02645 (- 3) 
0.2125 (-3) 
0.1488 (-4) 
03340 (-4) 
0.1487 (-4) 
0.2384 (- 3) 
0.1 173 ( - 3) 
0.5857 (- 5) 
01540 (-4) 
0.4575 (- 5) 

0.6791 ( - 3) 
0.3866 (- 3) 
0.4164 (-4) 
0.7711 (-4) 
0.1739 (-4) 

0.1 1 59 ( - 2) 
0.7332 (- 3) 
0.6531 (-4) 
0.7 186 ( - 3) 
0.2732 (- 3) 

09560 (- 2) 
0.5743 ( - 2) 
03421 (-2) 
01654(-2) 
0.1735 (-3) 

01167(-2) 
0'7705 (- 3) 
0.2129 (- 3) 
0.1290 ( - 3) 
0.2905 ( - 4) 
02743 (- 3) 
02164 (- 3) 
02549 (-4) 
02187 (-4) 
01413 (-4) 

02399 (- 3) 
0.1 153 (- 3) 
01262 (-4) 
0.2895 ( - 4) 
08593 ( -  5) 
0.1041 (-2) 
0.6000 ( - 3) 
0.1556(-3) 
01833(-3) 
05245 (-4) 

0.9040 ( - 2) 
05311 (-2) 
02876 (- 2) 
01901 (-2) 
0.5142 ( -  3) 

(a) M = 80, N = 8, FEV = 550. 
(b) M=80,  N = 8 ,  FEV=750. 
(c) M =  100, N =  10, FEV= 1200. 
(d) M1=60, N1=5, FEVl=300, M2=92,  N2=8,  FEV2=600. 
(e) M1=60, N1=5, FEV1=200, M2=84,  N2=7,  FEV2=800. 

and p is a parameter controlling the degree of density. If p = 1, a uniform distribution results, and if 
p > 1, a refined distribution is obtained in the neighbourhood of the singularity. The value p = 2 
was used in all of the experimental work. 

One of the quantities of interest in this problem is the velocity arC//ay along the centreline of the 
flow, the line x=O in Figure 2. The velocity profile along this line is presented in Figure 3 for 
M1= 100, N1= 10, FEVl = 1o00, M2 = 136, N2= 13 and FEV2= 3500. The stagnation point was 
found to be a distance 0.76 from the furthest clamped edge, in contrast to 071 predicted by Burgess 
and Mahajerin." The location of the stagnation point obtained by the MFS agrees exactly with 
the value obtained by Kelmanson.13 
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J,,= 

J,y= 
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yt 
V ~ J I = O  L 

1'0'0' x 

I 
I 
I 
I 
I 
' J I  =o ( X 

, - + I  

Figure 2. The driven cavity problem 

Jlx=O 

J, =o 
Y 

-f 1 

Figure 3. Velocity profile along the driven cavity centreline 
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Another quantity of interest is the vorticity V2$. In Figure 4 contour plots of approximations 
to the vorticity determined on a & x & grid with M1= 120, N1= 12, FEVl = 1500, M2= 144, 
N2 = 14 and FEV2 = 4000 are presented. These are virtually indistinguishable from the vorticity 
contours obtained by Ke1man~on.l~ 

In Figure 5 the final locations of the singularities near the boundary singularity are shown for 
the cases M = 200, N = 16, FEV = 2500 and M = 160, N = 13, FEV = 3500. These indicate that the 
MFS places several singularities in the vicinity of the boundary singularity, which is not surprising 
because the MFS representation is only valid if the auxiliary boundary formed by the singularities 

( - t , - f )  KJ,-t) 
Figure 4. Vorticity contours for the driven cavity problem 
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(-1.0) 

A 

approaches the boundary of the region under consideration at the singular point. (See 
Fairweather and Johnston3 and Oliveira.*) 

H * =o G 

J ,  =o qx=O 
Y 

J ,  =o * =o (0,0.25) E (0.5,0.25) 
F I) =o 

I) =a 
$ =1.5(1-4y2) v4+0 *x=O 
Y 

Y J ,  =3(1-16y2)  
Y 

--------------- - yt-----. ---- 
o x  

6_=0 

9 =o 
- (0.5,-0.25) 

C Y 

( 0 ,  -0.25) D 

qx=O *,=0 

J ,  =o J ,  =o 
Y Y 

* B  

3.3 Example 3-2: 1 contraction pow 

The final problem examined in this study is planar Stokes flow through an abruptly changing 
channel with contraction ratio 2: 1. This problem is considered by Black et aL5 using a boundary 
integral equation formulation. The flow region and boundary conditions are shown in Figure 6. 

Boundary points were placed on the boundary of the flow region in the following way. If 8M 
boundary points were used, M points were placed on each of the boundary segments AB, BC, CD, 
DE, EF, FG, GH and HA, and these were uniformly spaced along each segment. The reason for 
using a denser grid on each of the segments BC, CD, EF and FG is the presence of re-entrant 
corner singularities at the corners C and F. 

In order to test the accuracy of the method, we examined the behaviour of the x-derivatives of 
the velocity a$/ay along the centreline of the flow. Figures 7, 8 and 9 show the derivatives 
(a/dx) (a$/ay), (a2/ax2) (@lay) and (a3/ax3) (a$/i3y) respectively along the centreline y = 0. The 
graphs of these quantities are plotted on the interval -0.2<x<0.3 and were obtained using 
the improved version of the MFS with M1=200, N1= 16, FEVl=2500, M2=248, N2=4 and 
FEV2=7500. The results presented in Figures 7, 8 and 9 show good agreement with the 
corresponding results of Black et aL5 The results for (a/ax)(a$/ay), (a2/dx2) (a$/ay) and (a3/ax3) 
(a$/ay) on 0 3  < x  <0.5 were poor because the finite location of the downstream boundary DE 
gives rise to errors in the x-derivatives of a$/dy as x+05, which propagate about 0.2 units into the 
flow field (see Black et a1.)5 

Figure 6. 2: 1 contraction flow 
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F 
a 3  
ax Is1 

( -0 .  

Figure 9. Centreline variation in (a3/ax3) (a+/ay) 

4. CONCLUSIONS 

In this study a new formulation of the method of fundamental solutions for solving biharmonic 
problems is presented. This formulation is based on the simple layer potential representation of 
Fichera and shares many of the features of the two previous formulations of the method of 
fundamental solutions for biharmonic 

This formulation is ideally suited for solving problems in fluid flow where the velocities are 
prescribed on the boundary of the flow region. As was the case in the two previous 
formu1ations,lv2 the present MFS, in contrast to the boundary integral formulation of the simple 
layer potential representation of Fichera (see R i~h te r )~  does not appear to be adversely affected by 
geometrical discontinuities. 

The accuracy of the method is demonstrated by solving three problems arising in Stokes fluid 
flow. The results compare favourably with published results obtained using boundary integral 
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formulations. In comparison to the boundary element method, the MFS generally requires fewer 
degrees of freedom to produce results of a prescribed accuracy. 

The main disadvantage of this formulation, as is the case for all MFS formulations, is the 
relatively large cost in computer time involved in applying the non-linear least squares 
minimization algorithm. This cost has been reduced by exploiting various degrees of symmetry 
which the problem might possess. 
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APPENDIX 

If in expression (5 )  we replace, for simplicity, x p i ,  x f j ,  y p j ,  and y f j  by x ,  x i ,  y and y j ,  respectively, and 
set 

D X = x - x j ,  D Y = y - y j ,  T1 = ( D X ) z + ( D Y ) 2 ,  

we may write 
N 

I ) N =  1 ( C j D X + d j D Y }  [log(Tl)+l]. 
j =  1 

(9) 

From (1) and (2), we need to provide LMDIF with 

log(T1)+ 1 +- 2 ( D x ” ] } ,  i = M + l ,  M + 2 , .  . . , 2 M .  (11) T1 

Other quantities of interest are 

and these are given by 
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- (DX)‘ + 6(DX)’ * (D Y)’ -(D Y)’ ] 1 
(TI )3 

(DX)3 * D Y - 3DX - ( D  Y)’ 
(TU3 

3 

1 -(DX)4.DY+6(DX)Z*(DY)3 -(DY)5 
( T1)“ 

(DX)5 - 14(DX)3 * ( D  Y)’ + 9DX * (D Y)4 
( TI)“ 

+ 4dj 

respectively. 

and T2 =(SX) ’  + ( D  Y)’, expressions (10)-112) become 
If, as in Examples 1 and 2, the problem has symmetry about the y-axis, then with SX = x + xj 

2(D Y)’ 2(D Y)’ 
log(T1. T2)+2+- +-I}, T2 i=M+1,  M + 2 , .  . . , 2 M ,  

T1 
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